Fully Packed Loop configurations in a triangle and Littlewood-Richardson coefficients
نویسنده
چکیده
We are interested in Fully Packed Loops in a triangle (TFPLs), as introduced by Caselli at al. and studied by Thapper. We show that for Fully Packed Loops with a fixed link pattern (refined FPL), there exist linear recurrence relations with coefficients computed from TFPL configurations. We then give constraints and enumeration results for certain classes of TFPL configurations. For special boundary conditions, we show that TFPLs are counted by the famous Littlewood Richardson coefficients. Résumé. Nous nous intéressons aux configurations de “Fully Packed Loops” dans un triangle (TFPL), introduites par Caselli et al. et étudiées par Thapper. Nous montrons que pour les Fully Packed Loops avec un couplage donné, il existe des relations de récurrence linéaires dont les coefficients sont calculés à partir de certains TFPLs. Nous donnons ensuite des contraintes et des résultats énumératifs pour certaines familles de TFPLs. Pour certaines conditions au bord, nous montrons que le nombre de TFPL est donné par les coefficients de Littlewood Richardson.
منابع مشابه
Some combinatorics of rhomboid-shaped fully packed loop configurations
The study of rhomboid-shaped fully packed loop configurations (RFPLs) is inspired by the work of Fischer and Nadeau on triangular fully packed loop configurations (TFPLs). By using the same techniques as they did some nice combinatorics for RFPLs arise. To each RFPL and to each oriented RFPL a quadruple of binary words (α, β; γ, δ) – its so-called boundary – is assigned. There are necessary con...
متن کاملEstimating deep Littlewood-Richardson Coefficients
Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups (GLn). The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concav...
متن کاملA max-flow algorithm for positivity of Littlewood-Richardson coefficients
Littlewood-Richardson coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the general linear group GL(n,C). They have a wide variety of interpretations in combinatorics, representation theory and geometry. Mulmuley and Sohoni pointed out that it is possible to decide the positivity of Littlewood-Richardson coefficients in polynomial time...
متن کاملA Conjectured Formula for Fully Packed Loop Configurations in a Triangle
We describe a new conjecture involving Fully Packed Loop counting which relates (via the Razumov–Stroganov conjecture) recent observations of Thapper to formulae in the Temperley–Lieb model of loops. PZJ was supported by EU Marie Curie Research Training Networks “ENRAGE” MRTN-CT-2004005616, “ENIGMA” MRT-CT-2004-5652, ESF program “MISGAM” and ANR program “GIMP” ANR05-BLAN-0029-01. The author wan...
متن کاملLittlewood-Richardson coefficients and Kazhdan-Lusztig polynomials
We show that the Littlewood-Richardson coefficients are values at 1 of certain parabolic Kazhdan-Lusztig polynomials for affine symmetric groups. These q-analogues of Littlewood-Richardson multiplicities coincide with those previously introduced in [21] in terms of ribbon tableaux.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 120 شماره
صفحات -
تاریخ انتشار 2013